Exercise 27

Plot the gradient vector field of f together with a contour map of f. Explain how they are related to each other.

$$
f(x, y)=\ln \left(1+x^{2}+2 y^{2}\right)
$$

Solution

Calculate the gradient and call it \mathbf{F}.

$$
\begin{aligned}
\mathbf{F} & =\nabla f \\
& =\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right\rangle f \\
& =\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle \\
& =\left\langle\frac{\partial}{\partial x}\left[\ln \left(1+x^{2}+2 y^{2}\right)\right], \frac{\partial}{\partial y}\left[\ln \left(1+x^{2}+2 y^{2}\right)\right]\right\rangle \\
& =\left\langle\frac{1}{1+x^{2}+2 y^{2}} \cdot \frac{\partial}{\partial x}\left(1+x^{2}+2 y^{2}\right), \frac{1}{1+x^{2}+2 y^{2}} \cdot \frac{\partial}{\partial y}\left(1+x^{2}+2 y^{2}\right)\right\rangle \\
& =\left\langle\frac{1}{1+x^{2}+2 y^{2}} \cdot(2 x), \frac{1}{1+x^{2}+2 y^{2}} \cdot(4 y)\right\rangle \\
& =\left\langle\frac{2 x}{1+x^{2}+2 y^{2}}, \frac{4 y}{1+x^{2}+2 y^{2}}\right\rangle
\end{aligned}
$$

The vector field of this gradient is superimposed on a contour plot of $f(x, y)$. Notice that the vectors are perpendicular to each of the contours, pointing in the direction of greatest increase.

